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a b s t r a c t

Earthworms have a significant influence on the structure, composition and functioning of forest eco-
systems, but in spite of their role as ecosystem engineers, little is known on the factors controlling their
distribution across European forests. Optimised sampling techniques, as well as more advanced statis-
tical tools and geographical information systems have facilitated studies at the landscape scale. But these,
and even larger-scale studies, are scarce due to data limitations, taxonomic inconsistencies and practical
issues in linking existing databases. In this continental-scale field-based study we used boosted
regression tree modelling to identify and evaluate the relative importance of environmental factors
explaining earthworm incidence (presence/absence) and abundance (density and biomass) in European
forests. To parameterise our models earthworms were sampled in six forest landscapes along a lat-
itudinal gradient from the boreal north to the Mediterranean south in spring or autumn of 2012, together
with several environmental variables. Earthworms were sampled using a combined method of mustard
extraction and hand sorting of litter and a soil monolith, after which they were weighed and identified to
functional group (epigeic, endogeic and anecic). We found that litter- and soil-related variables best
explained earthworm incidence and biomass in European forests, leaving only a minor role to climate-
related variables. Among the litter related variables, understory vegetation played an important role in
explaining earthworm incidence and abundance. The relative importance of explanatory variables
differed between models for incidence, density and biomass and between earthworm functional groups.
Our results suggested that threshold values for soil C:N ratio, forest floor pH and understory plant
biomass and plant nutrient concentrations have to be attained before earthworms can occur. Beyond
these threshold values, variables like soil C:N ratio, tree litter C:P ratio and forest floor mass further
þ32 16 32 97 60.
.
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explain earthworm biomass. Mechanisms behind these observations are discussed in the light of future
earthworm distribution modelling at continental scale.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Earthworms are known as ecosystem engineers modifying the
physical, chemical and biological soil properties (Blouin et al.,
2013). They contribute to ecosystem functioning by changing soil
porosity, by controlling the rate of organic matter decomposition
and nutrient release, and consequently also indirectly influence
primary production (Scheu and Wolters, 1991; Lavelle and Spain,
2001; Scheu, 2003; Edwards, 2004). Based on their ecology,
Bouch�e (1977) classified earthworm species into three ecological
groups, namely epigeic, endogeic and anecic earthworms. These
functional groups have a different behaviour, and thus affect
ecosystem functioning differently (Lavelle and Spain, 2001). Epigeic
earthworms are rather small-sized species that livewithin the litter
layer on the soil surface or within the uppermost part of the min-
eral soil and they feed on plant litter. Endogeic earthworms are
geophagous species of generally intermediate size that live in a
network of subhorizontal burrows in the mineral soil. Anecic
earthworms finally, are large earthworm species that live in deep
(semi) permanent vertical burrows in the mineral soil and feed on
leaf litter that they drag into their burrows. Representing the
greatest animal biomass component in most European forest soils
(Lavelle and Spain, 2001), earthworm community composition and
activity can have major consequences for the structure, composi-
tion and functioning of forest ecosystems (Hale et al., 2006; Lukac
and Godbold, 2011). It is therefore highly relevant to know how
environmental variables affect the incidence and abundance of
earthworms (Schr€oder, 2008).

The composition of earthworm communities and their distri-
bution can be studied at different spatial scales, e.g. local, landscape
or continental scale. It is likely that factors influencing earthworm
presence are scale-dependent (Schr€oder, 2008). At the local scale,
earthworm incidence and abundance in forests has been shown to
be influenced by soil moisture conditions (Whalen and Costa,
2003), soil texture (Fragoso and Lavelle, 1987), soil pH (Ma, 1984),
litter quantity (Jordan et al., 2000; Nachtergale et al., 2002), and
litter type (Peterson et al., 2001). At the landscape and continental
scales, soil pH (Ammer et al., 2006; Moore et al., 2013) and litter
type (Muys and Lust, 1992; Vahder and Irmler, 2012) remain
influential, but variables such as climate (Rutgers et al., 2015), land
use history (R€aty and Huhta, 2004) and dispersal possibilities (R€aty
and Huhta, 2004; Su�arez et al., 2006; Shartell et al., 2013) become
more important (Lavelle and Spain, 2001). Earthworm distribution
at local scales has been studied in depth in most terrestrial eco-
systems and bioclimatic regions worldwide (e.g. Fragoso and
Lavelle, 1987; Peterson et al., 2001; Whalen and Costa, 2003;
Su�arez et al., 2006). More recently, a next generation of larger-
scale studies has been stimulated by the availability of new sam-
pling and species identification techniques, more advanced statis-
tical tools and geographical information systems (Deca€ens, 2010;
Birkhofer et al., 2012; Shartell et al., 2013; Pansu et al., 2015).
Despite these recent advancements and the importance for syn-
thetic data analysis at larger spatial scales in soil ecology, only a few
studies on earthworm distribution have exceeded the landscape
scale (Lindahl et al., 2009; Deca€ens, 2010; Rutgers et al., 2015).
Studies at larger scales can provide new insights about the drivers
of the abundance and composition of soil macrofauna
communities, but these are challenging for a number of reasons
(Schr€oder, 2008; Cameron et al., in press). A standardised sampling
executed over a large scale is costly, logistically, and often physi-
cally, demanding. Compiling datasets from different studies could
therefore be an alternative solution. However, as Cameron et al. (in
press) summarise, compiled datasets often suffer from data limi-
tations due to differing sampling techniques, taxonomic in-
consistencies and practical issues with linking and transferring
databases.

In this paper we present the results of a continental-scale field-
based study on earthworm incidence and abundance in mature
forests. The objective of this research was to identify and evaluate
the relative importance of a set of abiotic environmental variables
(climate and soil parameters) and biotic variables such as vegeta-
tion composition and forest stand characteristics in explaining
earthworm incidence and abundance in European forests. We
evaluated the incidence and abundance of earthworm commu-
nities and the different functional groups of earthworms (epigeic,
endogeic and anecic). As our sampling locations were spread along
a latitudinal gradient from boreal to Mediterranean regions in
Europe, covering distinct climate types (Peel et al., 2007), we
hypothesised that earthworm community characteristics are pri-
marily driven by climatic factors. Furthermore, since the three
earthworm functional groups occupy different niches in the forest
soil system and have distinct feeding behaviours (Bouch�e, 1977;
Sheehan et al., 2008; Ferlian et al., 2014), we expected that the
relative importance of the different control factors would differ
between the three functional groups. We hypothesised that the
incidence and abundance of endogeic species would primarily be
explained by soil quality related factors, while that of epigeic and
anecic species would be more influenced by litter quality param-
eters. This study extends on previous research at the landscape
scale (Palm et al., 2013; Shartell et al., 2013; March�an et al., 2015) by
investigating earthworm community characteristics in mature
forests at a continental scale. This research overcomes most of the
aforementioned problems with large scale data sets, as all data
were collected within a single study in the same standardised way,
species were identified to the same taxonomic level and compiled
into one single database.
2. Material and methods

2.1. Study sites

Sampling took place in the exploratory platform of the FunDi-
vEUROPE project (Baeten et al., 2013). This platform was designed
to assess biodiversity-ecosystem function relationships along a tree
species richness gradient in mature forests. The six studied forest
landscapes (hereafter called sites) in this platform span most of the
European bioclimatic gradient and representmajor European forest
types including the boreal forest (North Karelia, Finland), hemi-
boreal forest (Białowie _za, Poland), temperate beech forest (Hainich,
Germany), mountain beech forest (Râsça, Romania), thermophilous
deciduous forest (Colline Metallifere, Italy) and Mediterranean-
mixed forest (Alto Tajo, Spain) (Appendix 3, Fig. S1).

Each study site included between 28 and 43 selected plots
(30 � 30 m) with different combinations of a fixed set of locally
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dominant tree species. The established plots ranged in tree species
diversity from one to five species per plot. Tree diversity however
had no relevant effect on any of the earthworm variables and is
therefore not further discussed. In total, the platform consisted of
209 plots with 16 target tree species, some of them occurring in
multiple sites. The species pool comprised of conifers, deciduous
broadleaves and evergreen broadleaves. For more details consult
Baeten et al. (2013).

2.2. Field sampling

Earthworm sampling was carried out in spring 2012 for the sites
in Italy, Germany and Finland, and in autumn 2012 for the sites in
Poland, Romania and Spain. As advised in literature, we targeted
our earthworm sampling in spring or autumn because of the humid
soil conditions and positive temperatures (Berry and Jordan, 2001;
Holmstrup, 2001; Baker andWhitby, 2003; Eggleton et al., 2009). In
spite of this principle, our sampling campaign in Romania and Italy
was characterised by extended drought periods prior to sampling,
which influenced the sampling success. Plum and Filser (2005)
estimated that it takes about half a year for an earthworm popu-
lation to recover after a disturbance. Consequently, it could be that
sites affected by recent droughts had not fully recovered yet,
resulting in a lower earthworm abundance. Moreover, earthworms
still in diapause (curled up 60e120 cm deep in soil (Sims and
Gerard, 1999)) do not react to mustard suspension (Plum and
Filser, 2005) and are out of reach for the 20 cm deep soil sam-
pling. This could have resulted in an undersampling of anecic and
endogeic earthworms.

Plots were divided in nine (10� 10m) subplots. In each plot, one
earthworm samplewas taken in the central subplot. Sampling close
to tree stems was avoided and whenever possible performed in
between different tree species. Earthworms were sampled by
means of a combined method. First, litter was hand sorted over an
area of 25 � 25 cm. Then, litter was removed over a larger area of
1 � 0.5 m in order to effectively apply an ethological extraction of
earthworms using a mustard suspension (Valckx et al., 2011).
Finally, hand sorting of a soil sample of 25� 25 cm and 20 cm depth
was performed in the middle of the 1 � 0.5 m area. Collected
earthworms were preserved in ethanol (70%) for two weeks,
transferred to a 5% formaldehyde solution for fixation (until con-
stant weight), after which they were transferred back to ethanol
(70%) for preservation of at least onemonth. Upon identification, all
earthworms were individually weighed, including gut content, and
classified into three functional groups, namely epigeic, endogeic
and anecic species. Since preservation experiments showed that
the weight of Lumbricus rubellus stabilises after two days of ethanol
preservation (De Wandeler et al., unpublished results) we assumed
the effect of a longer preservation period on weight was negligible.
Results per unit area of the three sampling techniques were sum-
med to determine the earthworm presence/absence, density and
biomass per m2. For biomass recordings all earthworm biomass,
even worm fragments, were considered. For density and presence/
absence recordings, earthworm fragments were only considered if
they had a head. By counting only heads, we prevented different
fragments of the same earthworm being identified as multiple
individuals.

For all 209 plots, a set of 35 explanatory variables were deter-
mined (Table 1). See supplementary material for details (Appendix
1). The explanatory variables used in this study described climate,
soil, forest floor, understory, canopy and stand characteristics in the
forest plots. Tree litter traits were calculated as community
weightedmeans (CWM), both per plot (plot scale) and for a circular
area with a 10 m radius surrounding the earthworm sampling
location (local neighbourhood scale) and were represented by tree
litter C:N ratio, C:P ratio, specific leaf area index, cellulose, hemi-
cellulose and polyphenol content. Plot scale litter trait CWMs are
used in all reported models in the manuscript. In this study the
specific leaf area index of tree litter (SLA) was found to be positively
correlated with (i) litter nutritional quality variables (availability of
base cations, readily available dissolved organic carbon and total
dissolved nitrogen: Spearman’s correlation coefficient, rs
resp. ¼ 0.77, 0.61, 0.74; P < 0.001, respectively) and (ii) the regu-
lation of forest floor microclimatic conditions (the capacity of litter
to retain water: rs ¼ 0.70; P < 0.001). Consequently, SLA will be
interpreted as such. The non-woody understory vegetation was
determined and will be simply called understory vegetation in the
remainder of the text.

2.3. Data analysis

We used Boosted Regression Trees (BRT) to identify the envi-
ronmental variables most relevant in explaining the incidence and
abundance of earthworms in mature European forests. BRT is a
regression technique than can fit complex nonlinear relationships
with threshold patterns, able to handle different types of explan-
atory variables, and it has a straightforward interpretable output
(Elith et al., 2008; Aertsen et al., 2010). In addition, BRT has already
proven to be a useful tool to model species distribution patterns
(Leathwick et al., 2006; Elith et al., 2008; Cappelle et al., 2010; Palm
et al., 2013).

Across all sampled forest plots, 24 different earthworm species
were found. The majority of these species (67%) only occurred in
one particular site and the most common species were found in 4
out of 6 sampled sites (Appendix 2, Table S1). Because of the high
species turnover, we decided not to investigate species-specific
responses, but instead we used the total earthworm incidence,
density and biomass and the incidence, density and biomass of each
functional group (i.e. epigeic, endogeic, anecic) as response vari-
ables in the BRT analyses. Explanatory variables are summarised in
Table 1.

Data exploration indicated that the earthworm data were zero-
inflated and had a strong positively skewed distribution. As a high
proportion of zero observations in abundance models may impact
model parameter estimates and consequently the response variable
estimates (Lo et al., 1992), a two-step model approach called Delta
approach or Hurdle model (Zuur et al., 2009) was used: first we
modelled the probability of presence/absence with binomial BRTs
(incidence models) and subsequently modelled the density and
biomass using only non-zero observations with BRTs assuming a
Gaussian error distribution (density and biomass models). In order
to meet the requirements of homogeneity and normality of re-
siduals, earthworm density and biomass were log10 transformed
prior to modelling.

To prevent our models from being affected by outliers or false
negative values, some plots were removed from the analysis. Out-
liers and false negative values can arise from design and observer
errors (Zuur et al., 2009). Design errors occurred in two plots where
intense sheep grazing and defecation resulted in unusually high
earthworm biomass. Observer errors occurred presumably due to
inaccurate sampling practices in two plots or when the observer
was unable to identify the sampled earthworm individual. This
happened occasionally when small juveniles or damaged in-
dividuals could not be identified to species or functional group
level. When the unidentified individuals contributed to 33% or
more of total earthworm density or biomass, the plot was consid-
ered as an outlier with subsequent omission from the analysis,
which was the case for only one plot in Italy. Since earthworm
fragments were normally only considered as an existing individual
if they had a head, false negative plots were created where only



Table 1
Summary of the climate, soil and vegetation variables used in Boosted Regression Trees (BRT) analyses to explain the presence of earthworms inmature European forests. Mean
(standard deviation), minimum and maximum for continuous variables; Median, minimum and maximum for rank variables; left blank in case of nominal variable.

Variable name Description Mean (SD) Min. Max.

CLIMATE
Heat load index Heat load index 0.82 (0.1) 0.52 1.02
Annual precipitation Annual precipitation (mm) 641 (77) 484 819
Annual temperature Annual mean temperature (�C) 7.7 (3.4) 1.3 14.0
Aridity Aridity index 0.86 (0.21) 0.48 1.30

SOIL
Slope Slope of the plot (classes) 1 1 3
Bedrock Bedrock weathering type (classes)
Calcareous bedrock Presence of calcareous bedrock (classes)
Sand Sand fraction (classes) 1 1 3
Silt Silt fraction (classes) 2 1 3
Clay Clay fraction (classes) 2 1 3
Soil drainage Soil drainage condition (classes) 2 1 3
Soil Depth Soil Depth (classes) 3 1 3
Soil type acidic or buffered substrate (classes)
Soil pH pH of mineral soil at 10e20 cm (CaCl2) 4.62 (0.95) 3.39 7.31
Soil C:N Soil C:N ratio at 10e20 cm of soil 16.2 (5.2) 6.8 35.6
Soil moisture Soil volumetric water content (%) 31.64 (6.9) 17.10 46.87

FOREST FLOOR
Humus type Main humus types (classes)
Forest floor pH pH of ectorganic layer (CaCl2) 5.08 (0.82) 2.95 6.76
Forest floor mass Dry mass of ectorganic layer (kg/m2) 2.102 (1.227) 0.404 9.851
Management Current forest management (classes)
Forest structure Current forest structure (classes)
LAI Leaf area index (m2/m2) 4.38 (1.97) 0 9.10
Tree age distribution Age distribution of tree canopy (classes)
Understory biomass Non-woody understory biomass (g/m2) 17.25 (20.54) 0 136.96
Understory C:N C:N ratio of non-woody understory biomass 19.4 (7.6) 8.9 38.8
Understory C:P C:P ratio of non-woody understory biomass 267.1 (164.1) 64.8 811.1
Tree richness Number of tree species per plot 3 (1.1) 1 5
Tree evenness Tree species evenness per plot 0.702 (0.275) 0 1
Litterfall biomass Biomass of tree leaf litter (g/m2) 231.4 (112.95) 9.42 645.4
Litterfall C:N CWM C:N of tree leaf litter 65.7 (35.8) 24.7 174.7
Litterfall C:P CWM C:P of tree leaf litter 1131.0 (936.8) 195.9 4818.0
Litterfall cellulose CWM cellulose of tree leaf litter (%) 18.52 (2.25) 12.61 26.26
Litterfall hemicellulose CWM hemicellulose of tree leaf litter (%) 16.82 (1.48) 13.77 22.40
Litterfall polyphenols CWM polyphenols of tree leaf litter (%) 39.9 (21.55) 9.7 109.5
Litterfall SLA CWM SLA of tree leaf litter (cm2/g) 12.7 (6.1) 3.4 31.8

CWM ¼ community weighted mean; SLA ¼ specific leaf area.
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unidentified earthworm fragments without heads were present. To
minimise these false negatives and to maximise the number of
plots used in the total incidencemodels, plots with only earthworm
fragments were nevertheless recorded as containing earthworms.
In our incidence models, up to 4 outliers and 4 false negative plots
were recorded and removed. Up to 5 outliers were recorded and
removed from the density and biomass models.

All analyses were performed in R (R Development Core Team
2014 version 3.1.1), using ‘gbm’ package version 2.1 (Ridgeway,
2006) and its extensions developed by Elith et al. (2008). BRT
model parameters were set to constrain overfitting and optimise
the number of regression trees for each model (mostly 2000e6000
trees), with a learning rate of 0.005e0.0005 and a bag fraction of
0.75e0.85. Tree complexity, i.e. the number of nodes in a tree, was
set to 3 as recommended by Elith et al. (2008) for small datasets.
Model fit and predictive performance after 10-fold cross validation
of the biomass and densitymodels were assessed by the percentage
deviance explained (D2) (Littke et al., 2014), the correlation be-
tween observed and predicted values and the relative Root Mean
Squared Error (rRMSE) (Aertsen et al., 2010). The incidence models
were, in addition to the D2 and the correlation coefficient, assessed
by the calculated area under the receiver-operating characteristic
curve (AUC). The rRMSEwas calculated by dividing the RMSE by the
range of the response data [RMSE/(Max(response)-Min(response))]
*100. D2 is a measure for model fit (Buston and Elith, 2011), the
RMSE is a measure of model accuracy (Aertsen et al., 2012) and the
AUC is a measure of model discrimination (Reineking and Schr€oder,
2006). Higher D2, correlation and AUC scores, and lower rRMSE
values indicate better performing models.

We minimised multicollinearity between explanatory variables
in all models by the elimination of highly correlated variables that
resulted in high variance inflation factors (i.e. individual VIF <0.5
andmedian VIF <0.3). In this selection process priority was given to
retain variables that were, based on biological knowledge, assumed
to bemost directly linked to the response variable (Zuur et al., 2010)
and to climate variables as in our continental-scale study, we
wanted to test their importance as potential explanatory variable
next to soil and forest floor variables. If both correlated variables
were assumed to be equally closely related to the response vari-
ables, we dropped the explanatory variable with the lowest cor-
relation with the response variable in order to maximise the
explanatory power of the final models. As a consequence, the
following explanatory variables were nearly always removed: tree
leaf litter polyphenol content (rs ¼ �0.76 with aridity; P < 0.001),
aromaticity of dissolved organic carbon (rs ¼ �0.78 with tree leaf
litter C:P; P < 0.001), tree litter cellulose content (rs ¼ �0.7 with
SLA; P < 0.001), tree litter C:N ratio (rs ¼ 0.67 with tree litter C:P
ratio; P < 0.001), and understory C:N ratio (rs ¼ 0.72 with under-
story C:P ratio; P < 0.001). Collinearity between climate variables,
namely between aridity and both annual mean temperature and
annual precipitation, was handled differently to get a detailed un-
derstanding of the effects of different climate aspects. Final models
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were run twice with two different sets of climate variables: 1)
aridity, heat load index and annual mean temperature; and 2)
annual precipitation and heat load index. As the main results of
these models were similar we opted to only show the ‘aridity
models’ and considered observed differences with the ‘annual
mean temperature models’ in the discussion. In addition, the total
incidence and biomass models were reanalysed with diversity and
litter trait variables calculated at the local neighbourhood scale to
test possible changes in relative importance of diversity and litter
trait variables, but no consequential differences in relative impor-
tance were found (Appendix 3, Fig. S2).

In order to structure variable selection, two separate submodels
with explanatory variables related to vertically distinct zones in the
forest were developed. The first one contained forest floor, vege-
tation and stand characteristic variables and the second submodel
contained all variables related with and situated below the ector-
ganic horizon, hereafter called: (i) forest floor submodel and (ii) soil
submodel, respectively. These submodels were fitted with the
gbm.step function and further simplified in a backwards stepwise
manner by using the gbm.simplify function. Next we used a selec-
tion of explanatory variables from these simplified submodels
whose relative importance exceeded 5%, together with the climate
variables, to construct a final ecosystemmodel. In turn, finalmodels
were further simplified with the gbm.simplify function.

In the case of the density and biomass models for anecic
earthworms we could not use the simplify function because of the
small sample size (31 observations). However, we experienced
from the other models that the relative importance of the most
important variables hardly changed between different model runs,
even after model simplification. Therefore the total anecic density
and biomass models were built with the variables that had a rela-
tive importance of 5% or greater in the submodels. Since Kohavi
(1995) reported that the cross-validation estimates of model pre-
dictive performance from small datasets can fluctuate, an average
of five model runs was taken. From this model set, the model with
the highest model performance estimates was retained to report
model performance and partial dependence plots. We verified
whether density models could be used as an indicator of earth-
worm biomass in case biomass values are not available. We realised
that, despite the capabilities of BRT to limit overfitting, some could
still occur in our partial dependence plots. To avoid evaluating
potential spurious results we therefore only discussed the main
trends in the partial dependence plots.

All reported final models had an acceptable level of collinearity
between explanatory variables (i.e. Spearman correlations between
variables <0.7, individual variance inflation factor (VIF) <0.5 and
median VIF <0.3). All final models were checked for residual spatial
autocorrelation by calculating Moran’s I and spline correlograms.
Moran’s I was calculated using the ‘ape’ package (Paradis et al.,
2015), after ’Vincenty’ ellipsoid great circle distances between
sampling points had been calculated with the ‘geosphere’ package
(Hijmans et al., 2015). Spline correlograms with 95% pointwise
bootstrap confidence intervals were calculated with the ‘ncf’
package (Bjornstad, 2013).

Lastly, we checked whether the results of the density models
could be used as an indicator of earthworm biomass in the case that
biomass values are not available in earthworm studies. The
observed earthworm biomass was therefore plotted against pre-
dicted earthworm density.

3. Results

3.1. Earthworm incidence and abundance

In the 209 sampled plots earthworm density ranged from 0 to
548 individuals per m2, with a biomass range from 0 to 204 g/m2.
Average earthworm density and biomass were 90 earthworms/m2

and 24 g/m2, respectively (Fig. 1). Earthworms were found in 81% of
the plots. Endogeic species occurred in 57% of all sample plots,
epigeic species in 50%, and anecic earthworms in only 16% of all
sample plots (Fig. 2). Two functional groups were recorded in 33%
of the plots and all three functional groups were recorded in 9% of
the plots.

In mid-latitude forests (Germany and Poland) earthworms were
found in all plots, in contrast with the northern and southern sites.
In four of the six sampling sites endogeic earthworm species
dominated (Fig. 2). However, in the forests of Finland and Poland,
the epigeic species were more frequent than the other two func-
tional groups. Anecic earthworms were generally less frequent, and
they were completely absent in the forests of Spain.

3.2. Relationship between environmental variables and earthworm
incidence, biomass and density

The BRT model fit statistics ranged from 0.89 to 0.74 for the
correlation score and from 0.77 to 0.48 for the percentage deviance
explained (D2). These statistics, together with the statistics after the
10-fold cross validation, are summarised in Table 2 and indicate
confidence in the modelled results. Nevertheless, slight under- and
overpredictions were observed for small and large biomass values,
respectively (Appendix 3, Fig. S3). The weakest model statistics
were found in the anecic biomass model. The final models did not
show any significant residual spatial autocorrelation.

The total earthworm incidence was most strongly related to the
C:N ratio and mass of the non-woody understory vegetation (35
and 32%, Fig. 3). Since C:N and C:P ratios of the understory vege-
tation were strongly positively correlated (rs ¼ 0.72; P < 0.001),
earthworms appeared to prefer sites with an understory vegetation
with a low C:N and C:P ratio (<20 and <300, respectively). Their
presence was also most likely in forest floors with a relatively high
pH (pH 5e6) and soils with a low C:N ratio (<20). When earth-
worms were present, their biomass was primarily related to soil
C:N and tree litter C:P ratio, with higher earthworm biomass when
the ratios were lower than 15 and 1000, respectively. Furthermore,
a low forest floor mass and understory C:P ratio, and a high specific
tree leaf area and aridity index, indicated a higher earthworm
biomass.

Both the incidence and biomass of epigeic earthworms were
primarily related to the C:P ratio of the tree litter and non-woody
understory vegetation, with a clearly higher probability of earth-
worm presence and also a higher earthworm biomass below C:P
ratios of 200 and 1000, respectively (Fig. 4). Not only favourable
litter quality, but also deep soils and sites with a lowheat load index
(N-NE facing slopes) promoted epigeic earthworm incidence.

In contrast, endogeic earthworm incidence was mainly related
to humus type (29%), with a higher probability of earthworm
presence in Amphi and Mull humus types (Fig. 5). Where endogeic
earthworms occurred, their biomass was highest in plots with a low
forest floor mass and a soil pH greater than 4. In addition, their
incidence and biomass were higher at low soil C:N and both low
litter C:N and C:P ratios. The epigeic and endogeic incidencemodels
showed an opposite relation with soil C:N ratio around a common
threshold of 12. The probability of the presence of epigeic earth-
worms was much higher in soils with a C:N ratio higher than 12,
whereas the opposite was observed for the endogeic probability of
presence (Fig. 6).

Anecic earthworm incidencewasmost related to themass of the
forest floor (63%), indicating higher probability of earthworm
presence below 2 kg/m2 dry matter and in more humid sites with
an aridity index larger than 0.8 (Fig. 7). Anecics were most common



Fig. 1. Descriptive statistics of earthworm density (number/m2) and earthworm biomass (g/m2) across all individual sample plots. Each black dot indicates one of the 209 sampled
plots distributed among six forest types across Europe. Black vertical bars indicate the respective mean values. To better visualise the data points, individual points are slightly
vertically shifted (with the ‘Jitter’ function in R) to prevent superposition.

Fig. 2. Earthworm incidence (%) in total (pooled across functional groups) (black), and for each functional group separately in the different forest sites (grey).

Table 2
Model performance indicators of the final boosted regression tree models, grouped
by used response variable: area under the receiver-operating characteristic curve
(AUC), percentage deviance explained (D2), correlation score (Corr) and relative Root
Mean Squared Error (rRMSE) for model fit and after 10-fold cross-validation.

Fit Cross-validation

AUC D2 Corr rRMSE AUC D2 Corr rRMSE

Incidence models
Total 0.95 0.48 0.74 0.84 0.23 0.47
Epigeic 0.97 0.60 0.84 0.89 0.40 0.68
Endogeic 0.98 0.60 0.86 0.87 0.32 0.63
Anecic 0.96 0.53 0.77 0.86 0.27 0.54

Biomass models
Total 0.69 0.85 12.18 0.47 0.70 16.01
Epigeic 0.77 0.89 10.38 0.52 0.74 14.92
Endogeic 0.65 0.83 12.01 0.34 0.58 16.65
Anecic 0.67 0.86 13.61 0.13 0.31 22.16
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in sites with a soil pH range of 4.5e5.5, where the tree litter cel-
lulose content was low (<17%) and the specific tree leaf area larger
than 16 cm2/g.

Since annual mean temperature and annual precipitation were
respectively strongly negatively and positively correlated with
aridity, they were included in separate models. No remarkable
differences between ‘aridity models’ and ‘annual mean tempera-
ture models’ were observed. However, the probability of total
earthworm presence and total earthworm biomass were highest
within a range of annual mean temperature of 6e9 �C (Appendix 3,
Fig. S7).

Additionally, we identified and evaluated the environmental
factors mostly related to earthworm density measures (total
earthworm density and epigeic, endogeic and anecic earthworm
density). When comparing these density model results with
biomass model results, we observed fairly similar response curves
(Appendix 3, Fig. S4 and S5). Next to that, relatively strong positive
relationships between predicted earthworm densities and
observed earthworm biomass were observed (Appendix 3, Fig. S6).
However in spite of these relatively high correlations, the relative
importance (%) of the environmental variables between density
and biomass models differed considerably.

4. Discussion

4.1. Environmental factors related to earthworm incidence and
biomass in European forests

We identified the following explanatory variables as most
important across the different models: forest floor mass, soil and
forest floor pH, and soil and leaf litter nutrient concentrations.
These results are consistent with studies at local (Hendriksen,1990;
Neirynck et al., 2000; Lagani�ere et al., 2009) and landscape scales
(Muys and Lust, 1992; Ammer et al., 2006; Shartell et al., 2013). The
model results demonstrated that Boosted Regression Tree model-
ling is a useful technique to identify the relative importance of a set
of different explanatory variables and how they influence earth-
worm incidence and abundance across different forests. Our
models showed good explanatory power, though they could still be
improved with additional sampling or eventually by merging our
dataset with previously collected data. Doing so, it may become
possible to create powerful distribution models to estimate pre-
dictive maps of total earthworm density, biomass and the three
functional groups we distinguished across European forests. Our
results may have been influenced by somewhat untypically low
earthworm abundances in Italy and Romania resulting from un-
predictable drought events during the respective sampling periods.
Such stochastic effects of climate variability on the results could
only be evaluated by repeated sampling campaigns over several
years, which was beyond the scope of this study.



Fig. 3. Partial dependence plots of the five most influential variables that explain the total earthworm incidence (above) and total earthworm biomass (below) in European forests.
The relative influence (%) of each explanatory variable is indicated above each graph. Each graph illustrates how the response variable (y-axis) is affected by a certain explanatory
variable, after accounting for the average effects of all other variables in the model. The fitted functions are centred around the mean response value and plotted on a common scale
(earthworm incidence on logit scale and the earthworm biomass on log scale). Hash marks along the top of the plots show the distribution of each explanatory variable in deciles.

Fig. 4. Partial dependence plots of the five most influential variables that explain the epigeic earthworm incidence (above) and epigeic earthworm biomass (below) in European
forests. The relative influence (%) of each explanatory variable is indicated above each graph. Each graph illustrates how the response variable (y-axis) is affected by a certain
explanatory variable, after accounting for the average effects of all other variables in the model. The fitted functions are centred around the mean response value and plotted on a
common scale (earthworm incidence on logit scale and the earthworm biomass on log scale). Hash marks along the top of the plots show the distribution of each explanatory
variable in deciles.
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4.1.1. Climate
According to our model results, climatic factors play only a
minor role in explaining earthworm incidence and biomass across
European forests. Apart from a higher probability of earthworm



Fig. 5. Partial dependence plots of the five most influential variables that explain the endogeic earthworm incidence (above) and endogeic earthworm biomass (below) in European
forests. The relative influence (%) of each explanatory variable is indicated above each graph. Each graph illustrates how the response variable (y-axis) is affected by a certain
explanatory variable, after accounting for the average effects of all other variables in the model. The fitted functions are centred around the mean response value and plotted on a
common scale (earthworm incidence on logit scale and the earthworm biomass on log scale). Hash marks along the top of the plots show the distribution of each explanatory
variable in deciles.

Fig. 6. Partial dependence plots of the epigeic and endogeic earthworm presence
probability for soil C:N ratio. The relative influence (%) of each explanatory variable is
indicated above each graph. Each graph illustrates how the response variable (y-axis)
is affected by a certain explanatory variable, after accounting for the average effects of
all other variables in the model. Hash marks along the top of the plots show the dis-
tribution of each explanatory variable in deciles.
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presence and higher earthworm biomass within a range of annual
mean temperatures between 6 and 9 �C (Appendix 3, Fig. S7), there
were only weak effects of climatic factors. In particular, the low
predicted probability of the presence of anecic earthworms in arid
conditions was unexpected, given the fact that many of these
species show diapause behaviour as an adaptive strategy to
drought (Lavelle, 1988). We may have missed the anecic earth-
worms in the drier sites, because large species occur at lower
densities and because the sampling period may not have been
optimal. The low probability of the presence of anecics in humid
and cold conditions on the other hand confirms previous obser-
vations by Terhivuo (1989). The low probability of anecic
earthworm presence in forests of northern Europe is likely to be
related to the unfavourable environmental conditions. Boreal for-
ests are generally conifer-dominated forests on nutrient-poor
podzolic soils (Barbati et al., 2007) with a low topsoil pH, which
creates a toxic environment for anecic earthworms (R€aty and
Huhta, 2004).
4.1.2. Soil properties
Soil C:N ratio was the most important soil property in our

models related to total earthworm incidence as well as biomass.
The entire earthworm community reached a biomass of
100e200 g/m2 in fertile forest soils with soil C:N ratios less than 15.
Such forest plots typically have Mull-like topsoils. The probability
of earthworm presence decreased considerably above a C:N
threshold value of 22, which corresponds to Mor-like topsoils.
Similar observations were made by Muys and Lust (1992) in
Flemish forests.

As could be assumed based on the feeding behaviour of endo-
geic earthworms (Ferlian et al., 2014), soil variables had a promi-
nent role in predicting their distribution (Fig. 5), muchmore than in
predicting the incidence and biomass of epigeic and to some extent
also the anecic earthworms. This corroborates our hypothesis that
endogeic species would primarily be influenced by soil properties.
Furthermore, the different ecology of the epigeic and endogeic
earthworm groups was emphasised by their opposite relationships
with soil C:N ratio. High soil C:N ratios were attributed to poorly
decomposable litter and consequent accumulation of incompletely
humified organic material (Zanella et al., 2011) providing a habitat
for epigeic earthworms. Low soil C:N ratios, on the other hand, are
related to Mull-like topsoils with high bioturbation activity of
endogeic and anecic earthworms, leading to a rapidly disappearing
litter layer, and thus, to fewer habitat opportunities and food for



Fig. 7. Partial dependence plots of the five most influential variables that explain the anecic earthworm incidence (above) and anecic earthworm biomass (below) in European
forests. The relative influence (%) of each explanatory variable is indicated above each graph. Each graph illustrates how the response variable (y-axis) is affected by a certain
explanatory variable, after accounting for the average effects of all other variables in the model. The fitted functions are centred around the mean response value and plotted on a
common scale (earthworm incidence on logit scale and the earthworm biomass on log scale). Hash marks along the top of the plots show the distribution of each explanatory
variable in deciles.
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epigeic earthworms (Butt, 1998; Capowiez and Belzunces, 2001;
Palm et al., 2013). It is striking that climatic variables had only
weak effects in our models, but it also shows that, in relative terms,
local humus type and the soil as a buffering system are of critical
importance to earthworms (Edwards and Bohlen, 1996; Bonkowski
et al., 1998).

In this context of predictive modelling it is important to un-
derstand that the choice of whether a variable is used as an
explanatory or as a response variable is unrelated to ecological
cause and effect relationships, and is rather driven by the objective
to identify the factors that can explain earthworm presence and
abundance in European forests. In this study for example, humus
type is used as an explanatory variable for earthworm presence and
abundance, but obviously earthworms themselves are a key driver
in humus type formation.
4.1.3. Vegetation and soil-vegetation interactions
As hypothesised, leaf litter quality was an important factor in

explaining earthworm incidence and biomass in European forests,
i.e. tree leaf litter C:P, C:N and SLA (Hendriksen, 1990; Cortez, 1998;
Holdsworth et al., 2012). Besides tree leaf litter, however, the
quality of the non-woody understory vegetation (C:P and C:N ratio)
was also important, but is commonly less considered. It is known,
that low understory biomass C:N and C:P ratios support high soil
microbial activity and growth (Bardgett, 2005) which in turn pro-
vides earthworms with more nutrients (Sampedro et al., 2006;
Dungait et al., 2008; Ferlian et al., 2014). This suggests that un-
derstory vegetation may locally stimulate earthworm incidence,
density and biomass via increased nutrient availability. This is
supported by Kourtev et al. (1999) who reported that two exotic
species in understory vegetation stimulated earthworm densities
by increasing soil pH and nitrogen availability. It seems that non-
woody understory vegetation can significantly contribute to an
increased food quality by decreasing the C:P ratio below a certain
threshold (<200). It appears that epigeic earthworms can only
occur below this threshold. Once this threshold is reached, epigeic
earthworm biomass increases gradually with decreasing under-
story C:P ratio (Fig. 4). Similarly, we found a relatively high
importance of tree leaf litter C:P ratio in the models for the total
earthworm biomass and epigeic incidence and biomass. As phos-
phorus is generally present in low concentrations, it may limit
microbial decomposer abundance and consequently the recycling
of other important nutrients (Gosz et al., 1973; Tessier and Raynal,
2003; Blanes et al., 2012), which in turn could limit the nutrient
availability for other organisms like earthworms.

While less important than leaf litter C:nutrient ratios, the SLA of
the tree litter contributed significantly to 60% of our models with a
relative importance ranging from 6 to 16% (Appendix 2, Table S2). In
models where SLA had an impact, we identified a threshold value of
15 cm2/g (10 cm2/g for epigeics), with a higher probability of
earthworm presence and higher biomass values above this
threshold value. High SLA is typically positively correlated with
high leaf nutrient concentrations (Poorter and De Jong, 1999;
Hoffmann et al., 2005), which we also observed in our study.
Accordingly, high nutrient concentrations associated with high SLA
valuesmay be the ultimate driver stimulating earthworm incidence
and abundance (Muys and Lust, 1992; Reich et al., 2005; De
Schrijver et al., 2012).

Forest floor mass was an important explanatory factor in the
total earthworm biomass model (Fig. 3). The negative relationship
between forest floor mass and earthworm biomass illustrates that
high earthworm abundance typically leads to a rapid disappear-
ance of the forest floor (Cortez and Bouch�e, 1998). Furthermore,
forest floor mass correlatedwell with total earthworm biomass, but
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notwith earthworm incidence. Therefore forest floormass does not
allow us to predict earthworm incidence, however where earth-
worms are present, the forest floor mass is negatively correlated to
earthworm biomass due to earthworm decomposition and bio-
turbation activity (Bohlen et al., 2004; Drouin et al., 2016).

It would have been interesting to also consider plant root related
parameters, such as root biomass, root exudates and root nutrient
concentrations (C:N, C:P). In forest ecosystems root biomass typi-
cally makes up a significant fraction of the total litter production
(Vogt et al., 1986; Saugier et al., 2001; Lepp€alammi-Kujansuu et al.,
2014), and seems to play an often overlooked, but important role
(Pollierer et al., 2007). Even though root and foliar N and P are often
correlated across species on a global scale, their relation within
sites is not always clear (Hobbie, 2015). Further exploration of their
importance, in addition to the aboveground predictors, is therefore
important.

4.2. Different factors explaining earthworm incidence and biomass

We observed that influential variables specifically explaining
earthworm incidence often differed from factors explaining
earthworm biomass. Similar observations were reported by Palm
et al. (2013), where predictor contributions changed between
incidence and densitymodels. We believe that these differences are
indicative of threshold values that must be reached before earth-
worms can occur (Curry, 2004).

The incidence of earthworms was generally high when the soil
C:N ratio was lower than 23, where sufficient non-woody under-
story vegetation was present with a low C:N ratio (<25), and also
when the forest floor pH was higher than 4. Once these pre-
requisites for earthworm incidence were met, earthworm biomass
could be more precisely explained by soil C:N, tree litter C:P and
mass of the forest floor (Fig. 3). The epigeic functional group was
atypical in this case, as the influential explanatory factors for inci-
dence and biomass were the same. This may indicate that earth-
worm presence and biomass for epigeics are influenced by similar
covariates whereas presence and biomass of the other groups were
explained by different factors.

4.3. Earthworm density as proxy for biomass

Our results indicate that earthworm density might be a good
proxy for earthworm biomass in European forests. Nevertheless
considerable differences in the relative importance of explanatory
variables existed between density and biomass models. The largest
differences between the density and biomass model results were
observed between the endogeic and anecic groups (Figs. 5 and 7
and Fig. S4). This could be explained by the distortion in the
linear relation between density and biomass for these functional
groups. There is a greater range in earthworm biomass in plots with
only few individuals (Appendix 3, Fig. S8). This range is enlarged by
the presence of large K-selected endogeic and anecic earthworm
species (Bouch�e, 1977; Dash, 2001) that occur in low densities
primarily in Italy, but also in Spain and Romania. A direct confir-
mation of this inference can be observed in the endogeic and anecic
density models that described a decreasing number of earthworms
in more arid environments. Incorporation of either density or
preferentially biomass models along with incidence models will
provide a better understanding of earthworm distributions
(Meynard and Quinn, 2007).
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